Spatial and temporal control of differentiation and cell cycle progression in Caulobacter crescentus.
نویسندگان
چکیده
The dimorphic and intrinsically asymmetric bacterium Caulobacter crescentus has become an important model organism to study the bacterial cell cycle, cell polarity, and polar differentiation. A multifaceted regulatory network orchestrates the precise coordination between the development of polar organelles and the cell cycle. One master response regulator, CtrA, directly controls the initiation of chromosome replication as well as several aspects of polar morphogenesis and cell division. CtrA activity is temporally and spatially regulated by multiple partially redundant control mechanisms, such as transcription, phosphorylation, and targeted proteolysis. A multicomponent signal transduction network upstream CtrA, containing histidine kinases CckA, PleC, DivJ, and DivL and the essential response regulator DivK, contributes to the control of CtrA activity in response to cell cycle and developmental cues. An intriguing feature of this signaling network is the dynamic cell cycle-dependent polar localization of its components, which is believed to have a novel regulatory function.
منابع مشابه
Developmental and environmental regulatory pathways in alpha - proteobacteria ARDISSONE , Silvia , VIOLLIER
Spatial and temporal control of cell differentiation and morphogenesis plays a key role in prokaryotes as well as eukaryotes. This is particularly important for bacteria that divide asymmetrically, as they generate two morphologically and functionally distinct daughter cells. Several alpha-proteobacteria, including the aquatic, free-living Caulobacter crescentus, the symbiotic rhizobia and the ...
متن کاملCell cycle control of cell morphogenesis in Caulobacter.
In Caulobacter crescentus, morphogenic events, such as cytokinesis, the establishment of asymmetry and the biogenesis of polar structures, are precisely regulated during the cell cycle by internal cues, such as cell division and the initiation of DNA replication. Recent studies have revealed that the converse is also true. That is, differentiation events impose regulatory controls on other diff...
متن کاملMutations in FlbD that relieve the dependency on flagellum assembly alter the temporal and spatial pattern of developmental transcription in Caulobacter crescentus.
The transcription factor FlbD regulates the temporal and spatial transcription of flagellar genes in the bacterium Caulobacter crescentus. Activation of FlbD requires cell cycle progression and the assembly of an early (class II) flagellum structure. In this report, we identify 20 independent gain-of-function mutations in flbD that relieve regulation by flagellar assembly. One of these, flbD-12...
متن کاملA Quantitative Study of the Division Cycle of Caulobacter crescentus Stalked Cells
Progression of a cell through the division cycle is tightly controlled at different steps to ensure the integrity of genome replication and partitioning to daughter cells. From published experimental evidence, we propose a molecular mechanism for control of the cell division cycle in Caulobacter crescentus. The mechanism, which is based on the synthesis and degradation of three "master regulato...
متن کاملGlobal analysis of cell cycle gene expression of the legume symbiont Sinorhizobium meliloti.
In α-proteobacteria, strict regulation of cell cycle progression is necessary for the specific cellular differentiation required for adaptation to diverse environmental niches. The symbiotic lifestyle of Sinorhizobium meliloti requires a drastic cellular differentiation that includes genome amplification. To achieve polyploidy, the S. meliloti cell cycle program must be altered to uncouple DNA ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Annual review of microbiology
دوره 57 شماره
صفحات -
تاریخ انتشار 2003